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Abstract
High air pollution events spanning multiple months and caused by environmental perturbations
such as droughts and wildfires are increasing in frequency, intensity and duration due to climate
change. While both daily and annual exposure to fine particulate matter (PM2.5) have regulatory
standards in the United States, mid-scale exposure at the monthly interval remains unregulated
and the public health impacts of mid-duration ambient air pollution exposure are poorly
understood. These present a new public health challenge in mitigating harmful effects of persistent
ambient air pollution on community health. We executed an ecological study of the associations
between monthly mean PM2.5 exposure with total, cardiovascular and respiratory mortality
counts, stratified by age, sex and race, in 698 counties in the conterminous United States from 1999
to 2018. A two-stage model was used to estimate the risk and number of deaths associated with this
exposure timescale reported as incidence rate ratios (IRRs) and absolute risk differences per
million persons (ARDs). Increased mortality of all types was positively associated with a 10 µg m−3

monthly change in PM2.5 exposure (total mortality IRR: 1.011, 95% confidence interval (CI):
(1.009, 1.013), ARD: 8.558, 95% CI: (6.869, 10.247); cardiovascular mortality IRR: 1.014, 95% CI:
(1.011, 1.018), ARD: 3.716, 95% CI: (2.924, 4.509); respiratory mortality IRR: 1.016, 95% CI:
(1.011, 1.023), ARD: 1.676, 95% CI: (1.261, 2.091)). Our results suggest elderly, non-black
minorities and males to be the most impacted subgroups along with metropolitan and highly
socially vulnerable communities. Heterogeneities in the magnitude and direction of association
were also detected across climate regions of the United States. These results elucidate potential
effects of monthly PM2.5 on mortality and demonstrate a need for future health policies for this
currently unregulated interval of ambient air pollution exposure.

1. Introduction

Ambient air pollution is a ubiquitous environmental exposure impacting global population health. Both
acute and chronic ambient air pollution exposure are associated with numerous health conditions involving
the respiratory [1], cardiovascular [1, 2], renal [3, 4], metabolic [5, 6], neurologic [7, 8] and reproductive
systems [9]. Besides air pollution sourced from industrial and commercial activities, increased frequencies of
extreme weather events including droughts [10] and wildfires [11] may contribute to elevated periods of
ambient air pollution lasting for several months and leading to potential social, economic and environmental
damages [12–14].
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While considerable work has evaluated acute [15–20] and chronic [20–26] exposure to ambient air
pollution, comparatively fewer studies exist on mid-duration exposure to air pollution at a monthly interval
[27–29]. Ambient air quality standards in the United States exist at both the daily and annual scales but there
is a gap with no established monthly regulatory thresholds. Exploring the consequences of mid-duration
exposure is becoming more relevant as extreme weather events, which are becoming increasingly frequent
and intense, are causing longer durations of elevated ambient air pollution periods [12, 30] as has been seen
with recent wildfire seasons in the American West and agricultural burning events in other countries [31]. It
is unclear if exposure to extended periods of air pollution present different magnitudes of risk from more
familiar daily or annual air pollution measures.

There is an additional dearth of nationwide studies that evaluate ambient air pollution in the general
population, including effects in younger adult populations who while traditionally healthier may show
adverse consequences when exposed to longer duration environmental hazards. Most nationwide assessments
of ambient air pollution focus on specific strata of the population, such as older adults (e.g. Medicare
population) [15, 16, 22, 32] or occupational cohorts [33]. Therefore, the magnitude of risk due to ambient
air pollution is poorly understood in younger adult populations and the general population as a whole.

We completed an ecological study to examine mortality events in the conterminous United States from
1999 to 2018 and estimate mortality risk and number of deaths associated with mid-duration exposure to
fine particulates with an aerodynamic diameter of 2.5 µg or less (PM2.5). We evaluated risk in the general
population and specific population strata defined by person and place-based identifiers. The results of this
study will elucidate the magnitude of association monthly PM2.5 has on human health and will serve as a
springboard for future work investigating mid-duration intervals of ambient air pollution health effects.

2. Materials andmethods

2.1. Study population
Using uncompressed cause specific mortality files from the National Center for Health Statistics (NCHS)
from 1999 to 2018 [34, 35], we generated monthly county level counts of total mortality and mortality by
cardiovascular (International Classification of Diseases 10th revision (ICD-10 codes I00–I99) and respiratory
(ICD-10 codes J09–J98) causes for the conterminous United States. We stratified these monthly aggregations
into four age groups (0–19, 20–39, 40–64 and 65+ years), three race groups (White, Black, non-black) and
two sex groups (male, female). Additional race categories were not evaluated due to low populations in finer
race strata. Underlying county level annual population estimates were obtained from the surveillance,
epidemiology, and end results program [36] and were aggregated for each population subgroup in our study
based on age, sex and race. We assigned year-specific annual population estimates to all the months in a given
year.

2.2. Outcome
This study evaluated total, cardiovascular and respiratory mortality counts at the county level and monthly
temporal resolution from January 1999 to December 2018 in the conterminous United States.

2.3. Environmental data
Monthly average ambient levels of daily 24 h mean PM2.5 (µg m−3) were obtained from the Environmental
Protection Agency (EPA) Air Quality System monitoring networks [37]. Monitor events that failed to meet
the EPA minimum daily summary criteria were excluded from the study (1.4% of data days). We averaged
daily pollutant levels within each calendar month and averaged multiple monitors within a county to
generate an overall monthly mean PM2.5 value. Data on time-varying confounders included mean monthly
temperature (Celsius) and total monthly precipitation (millimeters) from the National Oceanic and
Atmospheric Association’s (NOAAs) Nclimgrid product at a 5 km grid cell resolution [38]. We calculated a
monthly county level exposure for temperature and precipitation using zonal averages of all grid cells falling
within a county boundary.

2.4. Community characteristics data
We considered several place-based stratification variables as effect modifiers on the causal pathway between
monthly PM2.5 exposure and mortality. Place-based modifiers included: NOAA climate regions [39],
urbanicity status and social vulnerability index (SVI) categories. All nine NOAA climate regions were
represented in our study including the Northwest, Northern Rockies and Plains, Upper Midwest, Ohio
Valley, Northeast, Southeast, South, Southwest, and West (figure S1). The NCHS 2006 and 2013 binary
urban/rural classification codes were used to classify counties into metropolitan and nonmetropolitan
categories with the 2013 categorization being used in our primary analysis and the 2006 categorization being
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used for sensitivity purposes [40, 41]. In the binary NCHS urban/rural definition, metropolitan counties
were those that fell under the categories of: large central metro, large fringe metro, medium metro, and small
metro. Nonmetropolitan counties were those that were classified as micropolitan and noncore. The county
level SVI for 2018 was used as an overall measure of socio-economic vulnerability of a community [42]. The
Centers for Disease Control and Prevention’s SVI is a composite index meant to capture community
resiliency to external stressors such as natural disasters and is built using Census derived data on
socio-economic status, demographic composition (e.g. race, age, disability status), household composition
and transportation infrastructure [43]. SVI was categorized into tertiles based on the study population’s
distribution of total SVI scores with the highest tertile representing the most socially vulnerable counties and
the lowest tertile representing the least socially vulnerable counties.

2.5. Study design
We estimated the association between mean monthly levels of exposure to PM2.5 and total, cardiovascular
and respiratory mortality using an ecological study design. For our primary analysis which evaluated the
association between mortality, mortality by type and stratification by place-based modifiers with mean
monthly PM2.5, we included counties whose monthly population was >25 000 people for the duration of the
study period and had⩾25% valid data-months of PM2.5 during the study period (N = 698 counties). In our
sub analysis of person-based effect modifiers (age, sex and race) for total and cardiovascular mortality only,
we restricted our study population threshold to counties with >100 000 people (N = 446 counties). We
imposed a stricter population threshold for our sub analysis to avoid model convergence issues with the
lower population subgroups. We did not analyze person-based effect modifiers for respiratory mortality or
the youngest age group (0–19) due to a sparsity of mortality events among this population.

2.6. Statistical analysis
We used a two-stage modeling approach commonly employed in ecological environmental epidemiology
research [17, 44, 45] to estimate the association between mean monthly PM2.5 and mortality. In the first
stage, an over dispersed Poisson regression model was fit to each county adjusting for mean monthly
temperature, total monthly precipitation and for temporal confounding using a Fourier term with a single
sine–cosine pair on elapsed time (1–240 months) along with an indicator variable for calendar year.
Adjusting for time in this manner controls for long term and seasonal trends in mortality due to events such
as seasonal respiratory epidemics and non-infectious disease epidemics (e.g. opioids), or changes in
population growth unrelated to air pollution exposure [46]. By modeling each county independently, we
made within-county comparisons by comparing each county to itself at a monthly interval, eliminating the
need to adjust for other potential confounding variables that we did not expect to vary frommonth to month
[47]. Strategies to adjust for time and the rationale behind this approach have been described elsewhere [46].
In the second stage, we pooled the county level estimates from the first stage models using a random effects
meta-analysis estimated via restricted maximum likelihood using themetafor package [48] to allow for
between-county heterogeneity to estimate an overall association between mean monthly PM2.5 and mortality.

Our measures of association were presented for a 10 µg m−3 increase in mean monthly PM2.5 and were
reported on the IRR and ARD scales. The ARD was calculated following Di et al (2017) [15] and was given by

ARD= α ∗ (exp(β ∗ 10)− 1)

(exp(β ∗ 10))

SEARD =∝ ∗exp(−β ∗ 10) ∗ se(10 ∗β)

where α is the baseline monthly mortality rate for all counties in the study area which was calculated as the
mean monthly mortality rate per mortality type and effect modification strata (i.e. sub analyses) and β is the
regression coefficient for PM2.5.

To investigate effect modification by place and person-based effect characteristics, we stratified the
original data into sub evaluations for each modification level. For example, to analyze effect modification by
NOAA climate region, we grouped the first stage county-specific effect estimates into their respective NOAA
climate region and completed the meta-analysis approach on each subset separately. In calculating ARD, we
estimated monthly baseline mortality rates for each effect modifier subset giving each strata its own baseline
mortality rate. Following Di et al (2017) [15] we assessed the statistical significance of effect modification by
race, sex, age, urbanicity and social vulnerability by choosing a referent category for each modifier and using
a Z test with an α level of 0.05 to determine statistical significance. We did not apply statistical tests for
NOAA climate region since there was no clear choice of a referent category to use.
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2.7. Sensitivity analyses
We evaluated the sensitivity of our model to the temporal construct of county-month-time outcome and
exposure, which is less documented compared to daily or annual time series approaches. Informed by
Bhaskaran et al [46], our evaluations included: (a) time stratified approach with a categorical variable for
year and a numeric variable for elapsed month (1–240), (b) Fourier approach with four4 sine–cosine pairs
and a categorical variable for year, (c) Fourier approach with one sine–cosine pair and a linear term for
elapsed time (1–240 months) and a squared term for elapsed time, (d) Fourier approach with a single
sine–cosine pair, a categorical term for year, a linear term for elapsed time, a squared term for elapsed time
and a cubed term for elapsed time, and (e) Cubic B splines with 3, 4 and 5 degrees of freedom per year. All
approaches using cubic B-splines had some counties that failed to converge in the stage 1 approach. We
qualitatively evaluated the fit of each approach using data from a single county by plotting model residuals
over time and by plotting fitted values for the outcome (total mortality) and exposure (monthly PM2.5) over
time to evaluate potential over/under smoothing in the time series. We further tested the model for the (a)
inclusion of a population offset and (b) comparison of effect estimates from negative binomial against
quasi-Poisson family models. An additional model was run for total mortality excluding the cardiovascular
and respiratory mortality events to examine if the measures of associations had large changes for total
mortality when cardiovascular and respiratory causes were excluded. Finally, we tested for potential
confounding by lagged meteorological variables by evaluating models using mean temperature and total
precipitation from the previous month as covariates and a model using the rolling average of mean monthly
temperature and total precipitation from the current month and the previous month’s values.

All statistical analysis was completed using R statistical software [49] (version 4.1).

3. Results

3.1. Descriptive statistics
The average total study population was approximately 228 million people and covered a broad geographic
range of the conterminous United States. The study population and total mortality events (n= 38.3 million)
remained similar across the two population thresholds used in the primary and sub analyses (table 1). For
person-based effect modifiers, the oldest age group (65+) composed the majority of mortality cases with
greater than 70% representation across all types. The youngest age group (0–19 years) had the smallest
percentage of mortality events (table 1). For race, most deaths were in White individuals with approximately
16% of the sample represented by non-black and Black minorities (table 1). Mortality by sex was nearly
evenly split for all mortality types (table 1).

Mortality events were observed across all NOAA climate regions with the Northeast, Southeast and Ohio
Valley regions representing over half of mortality counts while the Northern Rockies and Plains and
Southwest regions contributed only 6.5% of mortality events (table 1). A total of 33.6% of mortality events
occurred in counties within the high SVI tertile while the lowest SVI tertile had 25.9% of mortality events
(table 1). For urbanicity status, metro counties had close to 95% of the reported mortality events compared
to nonmetro counties (table 1).

There was a decreasing trend in mean monthly PM2.5 exposure over the past 20 years with a decline from
a 13 µg m−3 mean in the early 2000s to about 7 µg m−3 in 2018 (figure 1). The spatial distribution of PM2.5

displayed exposure heterogeneities with southern California, the Pacific Northwest and Rocky Mountains
areas having higher mean monthly PM2.5 compared to the rest of the country. The Great Plains were the least
sampled region in our study (figure 2).

Mean monthly PM2.5 summaries over the entire study period stratified by inclusion criteria
demonstrated the 100 000-population cutoff had higher concentrations of PM2.5 compared to the
25 000-population threshold used in the primary analysis (table 2). Stratification by NOAA climate region
indicated the Northeast, Ohio Valley, South, Southeast and West to have higher levels of mean monthly
PM2.5 compared to other regions (table 2). Levels of mean monthly PM2.5 exposure declined with tertiles of
SVI and going from metro to nonmetro counties (table 2).

3.2. Baseline associations between PM2.5 andmortality
All three mortality types (total, cardiovascular and respiratory) demonstrated a positive association with a
10 µg m−3 increase in mean monthly PM2.5 exposure (figure 3) with all IRR estimates being relatively precise
(i.e. narrow confidence intervals) (table S1). We estimated an IRR for each 10 µg m−3 of PM2.5 of 1.011 (95%
CI: 1.009, 1.013) for total mortality, 1.014 (95% CI: 1.011, 1.018) for cardiovascular mortality, and 1.016
(95% CI: 1.001, 1.023) for respiratory mortality. The ARD for a 10 µg m−3 increase in mean monthly PM2.5

was largest for total mortality ARD: 8.558 (95% CI: 6.869, 10.247) and also had the widest 95% confidence
interval compared to cardiovascular ARD: 3.716 (95% CI: 2.924, 4.509) and respiratory mortality ARD:
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Figure 1.Mean monthly PM2.5 for primary study population, 1999–2018 (N = 698 United States counties with >25 000 persons).

Table 1. Baseline characteristics of study population (1999–2018).

Category Stratification Variable Total mortality
Cardiovascular
mortality

Respiratory
mortality

Inclusion criteria Total (25 000 pop
threshold)

38 302 705 12 799 061 3644 670

Total (100 000 pop
threshold)

35 477 198 11 864 976 3335 762

Person-based variablesa Age (years)b

0–19 770 778 (2.2%) 25 630 (0.2%) 23 026 (0.70%)
20–39 1434 953 (4.1%) 151 024 (1.3%) 33 863 (1.0%)
40–64 7607 096 (21.4%) 2008 122 (16.9%) 443 352 (13.3%)
65+ 25 664 371 (72.3%) 9680 200 (81.6%) 2835 521 (85.0%)

Race
White 29 616 027 (83.5%) 9930 435 (83.7%) 2947 982 (88.4%)
Non-black 1013 736 (2.9%) 324 816 (2.7%) 80 968 (2.4%)
Black 4847 435 (13.6%) 1609 725 (13.6%) 306 812 (9.2%)

Sex
Male 17 740 684 (50.0%) 5785 870 (48.8%) 1595 042 (47.8%)
Female 17 736 514 (50.0%) 6079 106 (51.2%) 1740 720 (52.2%)

Place-based variablesc NOAA climate region
Northeast (n= 118) 9026 988 (23.5%) 3170 915 (24.8%) 829 755 (22.8%)
Northern Rockies and

Plains (n= 31)
489 207 (1.3%) 147 356 (1.1%) 54 754 (1.5%)

Northwest (n= 49) 1662 603 (4.3%) 507 701 (4.0%) 160 121 (4.4%)
Ohio Valley (n= 125) 6358 591 (16.6%) 2113 936 (16.5%) 634 437 (17.4%)
South (n= 91) 4290 770 (11.2%) 1395 047 (10.9%) 400 767 (11.0%)
Southeast (n= 127) 6624 935 (17.3%) 2155 833 (16.8%) 612 999 (16.8%)
Southwest (n= 47) 1984 264 (5.2%) 582 736 (4.6%) 200 280 (5.5%)
Upper Midwest (n= 60) 2674 222 (7.0%) 888 238 (6.9%) 247 325 (6.8%)
West (n= 50) 5191 125 (13.6%) 1837 299 (14.4%) 504 232 (13.8%)

SVId

High (n= 232) 12 881 632 (33.6%) 4395 737 (34.3%) 1208 769 (33.2%)
Medium (n= 232) 15 477 895 (40.4%) 5148 345 (40.2%) 1468 626 (40.3%)
Low (n= 233) 9937 406 (25.9%) 3253 565 (25.4%) 966 823 (26.5%)

Urbanicity
Metro (n= 530) 36 551 863 (95.4%) 12 218 917 (95.5%) 3452 241 (94.7%)
Nonmetro (n= 168) 1750 842 (4.6%) 580 144 (4.5%) 192 429 (5.3%)

a Percentages for person-based variables used the 100 000-population threshold (N = 446 counties).
b Age group 0–19 was not assessed in our sub analysis of age.
c N is the number of counties in each place-based strata and percentages are based on 25 000-population threshold.
d One county was not included in SVI analysis because it lacked a total overall SVI score. Percentages will not add up to 100%. Higher

values of SVI correspond with higher levels of social vulnerability.
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Figure 2.Mean monthly PM2.5 (µg m−3), 1999–2018 for primary study population (>25 000 persons). Unshaded areas are
counties not included in analysis.

Table 2. Baseline characteristics (percentiles) of mean monthly PM2.5 concentrations (µg m−3) for study population (1999–2018).

Stratification variable 5th 25th 50th 75th 95th

Inclusion criteria
25 000 pop threshold 3.81 6.93 9.34 12.24 18.06
100 000 pop threshold 4.60 7.43 9.70 12.50 18.20

NOAA climate region
Northeast 4.19 6.99 9.39 12.3 17.82
Northern Rockies and Plains 2.37 4.67 6.56 8.93 13.88
Northwest 2.76 4.39 6.05 8.66 15.02
Ohio Valley 6.33 8.84 11.19 14.16 19.65
South 5.97 8.18 10.03 12.11 16.13
Southeast 6.08 8.12 10.15 12.84 18.66
Southwest 2.02 4.11 5.84 7.93 13.14
Upper Midwest 4.84 7.32 9.31 11.88 16.21
West 2.67 5.78 8.35 12.15 22.64

SVI
High 3.77 7.17 9.60 12.49 18.50
Medium 4.08 7.19 9.55 12.40 18.10
Low 3.68 6.51 8.88 11.83 17.50

Urbanicity
Metro 4.51 7.39 9.70 12.53 18.30
Non-metro 2.55 5.20 7.87 10.97 16.70

Figure 3. Incidence rate ratios and absolute risk differences per million individuals for total, cardiovascular and respiratory
mortality associated with a 10 µg m−3 increase in mean monthly PM2.5.

6



Environ. Res.: Health 1 (2023) 025001 A Rau et al

Figure 4. Incidence rate ratios associated with a 10 µg m−3 increase in mean monthly PM2.5 for total, cardiovascular and
respiratory mortality stratified by NOAA climate region, urbanicity status, and SVI.

1.676 (95% CI: 1.261, 2.091) (table S1). This is a by-product from how the standard error for the ARD was
calculated since it involved multiplying by the baseline mortality rate which is higher for total mortality
compared to other mortality types.

3.3. Place-based effect modifiers
Place-based stratification by NOAA climate region indicated heterogeneities in the strength and direction of
association between monthly PM2.5 exposure and mortality (figure 4, tables S2–S4). Positive associations
between monthly PM2.5 exposure and mortality were detected for the Northeast, Northwest, South,
Southeast, Southwest and West regions (figure 4). The Northeast and Southeast regions had the strongest
positive associations with mean monthly PM2.5 and mortality (IRR for total mortality: 1.022, 95% CI: 1.018,
1.027 and 1.019, 95% CI: 1.011, 1.027 respectively). Negative associations were detected for the Ohio Valley
and Upper Midwest regions (figure 4). Model results stratified on SVI displayed a trend of increasing risk in
the most socially vulnerable counties (IRR for total mortality: 1.015, 95% CI: 1.010, 1.020) and lowered risk
in the least socially vulnerable counties (IRR for total mortality: 1.007, 95% CI: 1.003, 1.011) (figure 4, tables
S2–S4). Mortality risk was significantly higher in the highest SVI tertile compared to the lowest SVI tertile
(table S2). One county did not have a measure for total SVI and was excluded from the analysis for SVI.
Stratified analysis for urbanicity suggested positive associations with mean monthly PM2.5 and mortality for
metro counties (IRR for total mortality: 1.012, 95% CI: 1.009, 1.014) and marginal positive associations for
nonmetro counties (IRR for total mortality: 1.006, 95% CI: 0.999, 1.014) albeit mortality risk was not
significantly different comparing metro to nonmetro counties (figure 4, table S2). All results were relatively
precise (tables S2–S4).

Results presented on the ARD scale for place-based effect modifiers followed the same directional pattern
as the IRR scale. The Northeast, South, Southeast, Southwest and West regions had large ARDs from
increased monthly PM2.5 exposure particularly for total mortality (figure 5, table S2). ARD estimates ranged
from−5.234 (95% CI:−10.308,−0.161) per million in the Upper Midwest up to 16.308 (95% CI: 12.851,
19.764) per million in the Northeast region for total mortality. An ARD of respiratory mortality could not be
estimated for the Northern Rockies and Great Plains region due to convergence issues. The ARD for SVI was
close to double when comparing the most socially vulnerable to the least socially vulnerable counties (ARD:
11.405, 95% CI: 8.189, 14.621 per million vs ARD: 5.259, 95% CI: 2.697, 7.820 per million) for total
mortality (figure 5, table S2). Finally, ARD estimates for metro and nonmetro counties were mostly similar
and not significantly different from each other with metro counties having slightly higher ARDs (ARD:
8.698, 95% CI: 6.917, 10.480 per million for total mortality and ARD: 7.503, 95% CI: 2.028, 12.978 per
million respectively) (figure 5, tables S2–S4).

3.4. Person based effect modifiers
Person-based effect modification was only assessed for total and cardiovascular mortality due to unstable
estimates with respiratory mortality from low sample sizes. Mortality events in the youngest age group
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Figure 5. Absolute risk differences per million individuals for total, cardiovascular and respiratory mortality associated with a
10 µg m−3 increase in mean monthly PM2.5 stratified by NOAA climate region, urbanicity status, and SVI.

Figure 6. Incidence rate ratios associated with a 10 µg m−3 increase in mean monthly PM2.5 for total and cardiovascular
mortality stratified by age, race and sex groups.

(0–19) was also not analyzed due to scarcity of events. The IRRs for age-based stratification demonstrated
that younger adults (20–39) had the strongest associated risk for cardiovascular mortality (IRR 1.041, 95%
CI: 1.020, 1.063) and that the age 40–64 group had the highest risk with total mortality (IRR 1.019, 95% CI:
1.015, 1.023) albeit this risk was not statistically significantly different from the younger adult (20–39) group
(figure 6, tables S5 and S6). The oldest age group had the smallest positive association with mean monthly
PM2.5 exposure and mortality (IRR for total mortality 1.012, 95% CI: 1.009, 1.014). Race based stratification
indicated the non-black race category had the strongest association with mean monthly PM2.5 and
cardiovascular mortality (IRR 1.025, 95% CI: 1.001, 1.041) followed by Black and White (figure 6, tables S5
and S6). The IRRs for the Black race category was significantly different than White for total mortality but
not cardiovascular mortality. Risk of total and cardiovascular mortality was not significantly different
comparing non-black to White categories. For the cardiovascular model, the non-black race category had
one county that did not converge and was excluded from the pooled results. Finally, sex-based stratification
suggested a higher risk in males (IRR for total mortality 1.015, 95% CI: 1.012, 1.018) (figure 6, tables S5 and
S6). All estimates were relatively precise (tables S5 and S6).

ARD estimates for age-based stratification demonstrated a large, significant effect in the oldest age group
(age 65+) (ARD: 47.404 per million for total mortality, 95% CI: 35.693, 59.114) with smaller impacts on the
younger age strata (ARD: 2.142 per million for age 20–39 and ARD: 9.619 per million for age 40–64 for total
mortality) (figure 7, tables S5 and S6). Race based stratification had varied results with similar ARDs across
race groups albeit non-black and Black had slightly higher ARD estimates than White populations (figure 7,
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Figure 7. Absolute risk differences per million individuals for total and cardiovascular mortality associated with a 10 µg m−3

increase in mean monthly PM2.5 stratified by age, race and sex groups.

table S5 and S6). Yet, the ARDs for Black and non-black were statistically significantly different from the
White ARD. Sex based stratification indicated males had a higher number of deaths associated with mean
monthly PM2.5 exposure than females, although this difference was not statistically significant (ARD: 11.0
per million for total mortality, 95% CI: 8.872, 13.208) (figure 7, tables S5 and S6).

3.5. Sensitivity analyses
Evaluation of our temporal smoothers indicated that a Fourier approach with a single sine–cosine pair and a
categorical variable for year struck a good balance of smoothing for the outcome time series and had
statistical parsimony compared to other approaches. A comparison of effect estimates reveals robust
inference across the approaches considered (table S7).

Models were robust to the inclusion of a monthly population offset and comparisons of negative
binomial vs overdispersed Poisson models yielded negligible differences in the effect estimates. For the effect
modification analysis by urbanicity status, we compared the meta-analysis effect estimates using the 2006
instead of the 2013 binary definition of urban/rural by NCHS and found little difference between the two
definitions so we proceeded with the most recent urban/rural classification. Lastly, we executed a model for
total mortality excluding cardiovascular and respiratory mortality events and observed an essentially
identical IRR (IRR: 1.010, 95% CI: 1.008, 1.013) with an ARD about half the value presented in our main
results (ARD: 4.762, 95% CI: 3.800, 5.730) which was anticipated as nearly half the total mortality counts
were classified as cardiovascular or respiratory events. Our models were robust to the inclusion of lagged
meteorological variables (including the previous month’s temperature and precipitation or a rolling average
of the current and previous month’s temperature and precipitation) with minimal change to our effect
estimates.

4. Discussion

Our findings demonstrate monthly mean exposure to PM2.5 showed positive associations with the incidence
rate and number of deaths associated with mortality events in the conterminous United States. Additional
heterogeneities in risk were detected across NOAA climate regions and by strata of age, race, sex, urbanicity
and social vulnerability. The use of NCHS cause specific mortality data allows for the exploration of risks
across a wide age spectrum, while simultaneously evaluating an exposure characteristic of moderate duration
air pollution intervals. Our results are some of the first for a large nationwide study to report the associations
of ambient air pollution with mortality in the general population and provides insight into the impact of
mid-duration ambient air pollution which is currently an unregulated interval of exposure.

Our estimates for monthly air pollution exposure detected an increased risk for total mortality similar to
previously reported studies evaluating daily PM2.5 exposure in the Medicare population[15]. Specifically,
acute daily PM2.5 had an increase in risk for total mortality in the Medicare population of 1.05% and an ARD
of 1.42 per million people per 10 µg m−3 increase in daily PM2.5 [15]. We found a similar percent increase in
risk of 1.1% but estimated a higher ARD of 8.6 per million people per 10 µg m−3 increase in mean monthly
PM2.5 for total mortality in the general population. The higher ARD estimate was anticipated given the
monthly interval is a longer period of time and an increase in mean monthly PM2.5 of 10 µg m−3 is a greater
cumulative increase in ambient air pollution against the daily interval. Compared to findings on chronic
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annual exposures, our study estimated lower risk from changes in monthly PM2.5. One study that evaluated
chronic annual exposure to PM2.5 in the Medicare population reported a 10 µg m−3 increase in average
annual PM2.5 increased the risk for total and cardiovascular disease mortality by 5% and 8.8% respectively
[23]. These were higher than our estimates for monthly exposure which were a 1.2% and 1.5% increase in
risk respectively.

We identified the elderly, racial minorities, metropolitan and highly socially vulnerable communities to
be the most impacted strata of the study population similar to findings using the Medicare population [21,
50]. Unlike in other studies, the data from NCHS facilitated estimation of mortality risk in age groups that
are typically overlooked such as younger adults. We reported relatively high risk from monthly PM2.5

suggesting that even younger adults who are typically healthier are still at an increased risk of mortality due
to mid-duration ambient air pollution exposure. Causes for increased risk are unknown but may be a result
of behavior that places individuals at risk for increased air pollution exposure such as outdoor occupations
or recreation which may also explain potential sex differences as we observed males had higher overall risk
than females across mortality types. One study investigating the associations between ozone and chronic
kidney disease also found younger adults to have a higher risk compared to older adults [51]. However, we
did estimate a lower absolute risk for younger adults measured by ARDs. This observation was intuitive since
younger adults as a population are expected to have a lower baseline mortality rate than older adults who are
frailer and may suffer from comorbidities which predispose them to mortality. Thus, even though younger
adults may have a slightly higher risk of mortality as reported by our IRRs, the public health impacts are still
lower than the impact in the elderly population when expressed in absolute terms. Elderly populations
should still be prioritized in public health interventions as a vulnerable subgroup.

Our findings reinforce the importance of estimating additive risk measures that are better at capturing
environmental health impacts by representing risk in terms of individuals affected. This approach facilitates
targeted public health interventions to protect the most vulnerable subgroups. Indeed, the results of our
statistical hypothesis testing of effect modification by person and place-based effect modifiers suggested that
effect modification may be present on one scale but not the other and may vary based on disease. Specifically,
age and race IRRs in our study were typically not significantly different from the referent category chosen.
However, ARD estimates showing the potential public health impact of ambient air pollution on these
communities did achieve statistical significance reinforcing the need to utilize absolute measures of effect.

While our results show similar risk of mortality between race groups when expressed with a
multiplicative measure of association, our ARD estimates do better at illustrating the disparities in the
absolute number of mortality events associated with ambient air pollution exposure demonstrating people of
color having significantly larger ARDs than White populations. This is due to the higher overall baseline
mortality rates in communities of color which propagate into higher realized ARDs associated with ambient
air pollution exposure. Our observations are similar to past work and reflect the impacts of environmental
racism on community health. A recent systematic review concluded strong evidence that areas with higher
social and economic deprivation were linked to higher levels of ambient air pollution and race-based
disparities in exposure [52]. Other studies in North America suggested racial minorities and lower
socio-economic status communities shared an undue burden of exposure to ambient air pollution exposure
compared to White and higher socio-economic status communities [53, 54]. Despite declines in ambient air
pollution concentrations over time in the United States, the benefits of these declines continue to be
inequitable across sub-populations with racial minority communities having persistent associations with
higher levels of PM2.5 and lagging in terms of achieving meaningful gains in decreased levels of PM2.5

concentrations over time [55]. Indeed, historical practices such as redlining continue to have modern day
impacts on the inequitable distribution of air pollution and contribute to disparities in health effects with
communities of color being most impacted [56]. Efforts to promote environmental justice and address the
effects of systemic racism are needed to combat racial disparities in mortality risk due to ambient air
pollution exposure. Metropolitan counties continue to have greater risk of mortality due to ambient air
pollution compared to nonmetropolitan counties as has been reported in other research [50, 53]. Continued
policy, energy and business changes are needed to reduce ambient air pollution emissions in urban areas.

Heterogeneities in the mortality risk across NOAA climate regions present a complex landscape of
mortality hazards associated with monthly PM2.5 exposure. In our analysis, some NOAA climate regions had
seemingly protective associations with monthly air pollution exposure, while other regions had harmful or
null associations. Regional differences in the associations of ambient air pollution and health are notoriously
difficult to tease apart and may be driven by multiple factors including differences in PM composition which
is known to vary both regionally and seasonally [57]. Other posited explanations for disparate regional
health effects include seasonal or regional variation in human behavior, weather conditions or unmeasured
confounders [58]. However not all studies identified regional differences in health effects when examining
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specific PM constituents which may indicate other agents are involved in this phenomenon [59]. Identifying
sources of between region variability is further complicated by the possibility of within region health effects
variability which may be driven not only by constituents of PM but by groups of gaseous pollutants [60].
Future research is needed to better understand the underlying drivers of observed regional differences in
health effects of ambient air pollution.

This research highlights the need for reevaluating air pollution policy and considering a monthly level
ambient air quality standard to monitor and protect against mid-duration exposures to ambient air
pollution. These moderate exposure events will likely become more frequent as extreme weather events such
as wildfires and droughts that produce increased and lasting volumes of particulates including smoke and
dust are suspected to become more common due to climate change [61]. By overlooking mid-duration
exposures, we may potentially propagate disparities in mortality risk in socially and demographically
vulnerable communities. Our study revealed mid-duration air pollution exposure risk which demonstrates
the need for investigative and policy consideration for this exposure timescale.

Future research is needed to explore the effects of mid-duration ambient air pollution exposure on
specific health conditions such as respiratory, neurological, reproductive and cardiovascular diseases. Given
that we evaluated the most severe health outcome there are likely less severe effects (e.g. hospitalizations,
emergency department visits, outpatient visits, medication prescriptions) that may be associated with
mid-duration ambient air pollution exposure that we overlooked. Additional work should also investigate
climatic heterogeneities in the impact of ambient air pollution on community health. This study was one of
the first to consider NOAA climate regions as an effect modifier on the causal pathway between ambient air
pollution exposure and mortality risk, but more research is needed to understand heterogeneities in risk
across geographic space bounded by climatic regimes.

The primary limitation of our work is the ecological study design subject to the ecological fallacy where
we cannot ascribe individual level risk based on estimates for aggregated units nor can we adjust for
individual level confounders. However, ecological research still proves useful for providing community-wide
estimates and for hypothesis generation informing future individual level analyses. Another limitation is
potential exposure misclassification as air monitors are not evenly distributed spatially and are typically
located in dense urban areas. Nonmetro and rural counties are likely under-sampled due to lack of air
monitors. Yet for a county level analysis, air monitor data can be seen as a useful measure of exposure for a
large portion of the population. Finally, we were limited in not being able to analyze person-based modifiers
for respiratory related mortality and the youngest age group (0–19) for all mortality types due to small
population with insufficient statistical power.

The strengths of our study include the use of uncompressed cause specific mortality files which capture
all reported events for the United States population during the nearly two-decade study period. Few research
studies on air pollution utilized the uncompressed cause specific mortality data files which allowed us to
study the entire general population. Many previous nationwide assessments of air pollution studied
population strata (e.g. Medicare population [15, 22, 23, 32] and occupational cohorts [33]), whose
association with air pollution may not be representative of the general population. Additionally, this study
was among some of the first and largest studies to evaluate monthly ambient air pollution exposure with
mortality at a national scale. Our emphasis is to highlight a need for policy that fills the gap between daily
and annual air quality standards and provide a more complete regulatory architecture to minimize public
health impacts.

5. Conclusions

In the general population, mean monthly levels of PM2.5 were associated with an increased risk and number
of deaths of total, cardiovascular and respiratory mortality events. These associations persisted within person
and place-based strata of the population particularly impacting the elderly, non-black and male individuals
and people living in the most socially vulnerable and metropolitan counties. This study demonstrated
evidence of risk at an unregulated temporal interval of exposure which should be considered as needing
future public health action to mitigate and reduce harm.
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